## OLIGOPOLY AND GAME THEORY

Instructor: Ghislain Nono Gueye

AUBURN UNIVERSITY

## Comparing market structures

| Perfectly competitive <br> market | Monopolistic competition | Oligopoly | Monopoly |
| :---: | :---: | :---: | :---: |
| Many sellers | Many sellers | A few sellers | One seller |
| Similar products | Differentiated products | Typically differentiated <br> products | Unique product without <br> close substitutes |
| No barrier to entry and | Low barriers to entry or <br> exit | Barriers to entry | High barriers to entry |

## Measuring market power in oligopoly

- Market power is the ability of a firm to control the price of the goods sold.
- There is a negative relationship between the number of firms in an industry and the market power that each firm has.
- In other words: the fewer, the merrier
- In general, economists use concentration ratios as a gauge of market power that firms have in an oligopoly.
- The most common concentration ratio used is the four-firm concentration ratio.


## Measuring market power in oligopoly (2)

- The four-firm concentration ratio expresses the sales of the four largest firms in an industry as a percentage of the industry's total sales.
- For example, if the four largest firms in an industry are firms A, B, C and $D$ with respective sales $a, b, c$ and $d$.
- Given the total sales by all the firms in the industry is $x$, we can calculate the four-firm concentration ratio as:
- Four-firm concentration ratio $=(a+b+c+d) / x$


## Measuring market power in oligopoly (3)

| Industry | Four-firm <br> concentration <br> ratio |  |
| :--- | :---: | :--- |
| Search engines | 98.5 | Google, Yahoo, Microsoft |
| Wireless Telecommunications | 94.7 | Verizon, AT\&T, Sprint Nextel, T-Mobile |
| Satellite TV providers | 94.5 | DIRECTV, DISH Network |
| Soda production | 93.7 | Coca-Cola, PepsiCo, Dr Pepper Snapple |
| Sanitary paper products | 92.7 | Kimberly-Clark, Procter \& Gamble, Georgia Pacific |
| Lighting and bulb manufacturing | 91.9 | General Electric, Philips, Siemens |
| Tire manufacturing | 91.3 | Goodyear, Michelin, Cooper, Bridgestone |
| Major household appliances | 90.0 | Whirlpool, Electrolux, General Electric, LG |
| Automobile manufacturing | 87.0 | General Motors, Toyota, Ford, Daimler-Chrysler |

[^0]
## Measuring market power in oligopoly (4)

- In the search engines industry, for instance, the four largest firms hold a very high percentage of the market share (close to 100\%).
- At the bottom of the list, in the automobile industry, the four largest firms hold $87 \%$ of the market share, which is still very significant.
- This illustrates the fact that oligopolists have big market shares and therefore enjoy significant market power.
- They have much control over their prices.


## Collusion and Cartels

- Oligopoly is neither perfect competition nor is it monopoly.
- However, oligopolists often have competitive tendencies as well as monopolistic tendencies.
- They often end up competing against each other even though they have monopolistic advantages.
- In order to understand this better, let's use the case of a duopoly.
- A duopoly is an industry with only two firms.


## Collusion and Cartels (2)

- Duopolies are hard to come by in general.
- However, we can find duopolies in small communities.
- For example, two telephone service providers could be enough in a small town of a couple of thousands people.
- Following is the demand schedule for cell phones in a small town:

| Price in \$ (P) | Number of customers (Q) | Total Revenue in \$ $(T R=P * Q)$ |
| :---: | :---: | :---: |
| 180 | 0 | 0 |
| 165 | 100 | 16500 |
| 150 | 200 | 30000 |
| 135 | 300 | 40500 |
| 120 | 400 | 48000 |
| 105 | 500 | 52500 |
| 90 | 600 | 54000 |
| 75 | 700 | 52500 |
| 60 | 800 | 48000 |
| 45 | 900 | 40500 |
| 30 | 1000 | 30000 |
| 15 | 1100 | 16500 |
| 0 | 1200 | 0 |

## Collusion and Cartels (4)

- If the two firms want to operate as perfectly competitive firms:
- The following condition must be satisfied: $\mathrm{P}=\mathrm{MR}=\mathrm{MC}$
- Duopolies usually have excess capacity, which means that the marginal cost is equal to 0 .
- For example, each cell phone service provider has a cell phone tower.
- Therefore, the additional cost incurred when a new subscriber is added is 0 .
- Consequently, each firm will provide 1200 customers with free phones and will not get any revenues.
- This case scenario is efficient but utterly unrealistic.


## Collusion and Cartels (6)

- If the two firms want to operate as monopolies:
- The monopolist chooses the price that maximizes his profit.
- He faces no kind of competition.
- According to the demand schedule, the total revenue is maximized when the price is $\$ 90$.
- Total revenue is then $\$ 54000$ with 600 customers.


## Collusion and Cartels (7)

- In this case scenario, it is good for the two firms to collude so they can earn the highest profit.
- Collusion is an agreement between rival firms that specifies the price that each firm charges and the quantity it produces.
- Therefore, in order for both firms to maximize their profit, each needs to charge $\$ 90$ and produce 300 phones.
- Each firm will then make a profit of $\$ 27000$.
- However, collusion is very often illegal and is prohibited by anti-trust laws.
- Firms that have colluded are called a cartel.


## Strategic choices

- Even if collusion occurs in a duopoly, there still remains a problem.
- A firm's sole purpose is to maximize profit.
- If both firms agree to charge $\$ 90$ for their cell phones and produce 300 units each...
- ... one of the two firms may be inclined to break the deal and charge a lower price in order to get a higher revenue.


## Strategic choices (2)

- Let's suppose firm A breaks the agreement and charges \$75 instead of the agreed $\$ 90$.
- The total market demand rises to 700 .
- Firm A will have 400 customers meanwhile firm B will keep its former 300 customers.
- The new total revenue of firm A will change to $\$ 30000$, which is an increase in total revenue of $\$ 3000$ compared to when it was still charging $\$ 90$.


## Strategic choices (3)

- Seeing that firm $A$ is making more profit having cut its price, firm $B$ will react too and match firm A's price.
- Firm B revenue will come from its 300 customers at the new price of \$75.
- Firm B's revenue will fall to $\$ 22500$, which is a loss of $\$ 7500$.
- But at this point, there is no reason why firm B should sit still and do nothing.
- It will lower its price further down to $\$ 60$, which will cause an increase in its revenue to increase to $\$ 24000$.


## Strategic choices (4)

- Firm A will try to react to firm B's action by lowering its prices too.
- It would not be wise for firm A to try to increase its market share by lowering the price below $\$ 60$.
- For example, if firm A charges $\$ 45$, its revenue will go down to $\$ 22500$, which is $\$ 1500$ less than if it had just matched firm B's price.
- Both firms will end up charging $\$ 60$ for their phones and individually make a profit of $\$ 24000$.
- In an oligopoly, a firm's market share is determined by the products it offers, the price it charges and the actions of its competitors.


## The Nash equilibrium

- The first kind of equilibrium we discussed earlier was the market equilibrium.
- The market equilibrium sets the price at a level that makes quantity demanded and quantity supplied equal.
- In the case of an oligopoly, price is not set the same way as we just saw.
- A Nash equilibrium is a state in which no economic agent can be better off by changing its current strategy.


## The Nash equilibrium (2)

- In the cell phone oligopoly example, the Nash equilibrium occurs when each firm produces 400 phones at a price of $\$ 60$ each.
- No firm can individually change this current strategy and increase its profit.


## Game Theory

- So far, we have analyzed strategic decisions in a duopoly.
- Those decisions are said to be "strategic" because they depend on what others do.
- In our duopoly example, firm A broke the deal, then firm B reacted, then firm A reacted again... and they finally reached an equilibrium.
- This is an example of game theory - a branch of mathematics used in economics to analyze the strategic behavior of decision-makers.
- In general, game theory allows us to determine the level of cooperation which is most likely to occur.


## A game

- A game consists of:
- A set of players: firm A and firm B
- A set of strategies available: cut price, increase price
- A specification of the payoffs for each combination of strategies: more profit, less profit, same profit
- A game is usually represented by a payoff matrix.
- A payoff matrix shows the players, the available strategies and the corresponding payoffs.


## A very popular game: the prisoner's dilemma

- Two prisoners are being interrogated separately about a crime they both participated in.
- Each is offered a plea bargain to cooperate by testifying against the other.
- If both suspects refuse to cooperate, neither can be convicted of a more serious crime though they will have to spend some time in jail.
- But the police have offered full immunity if one cooperates and the other does not.
- If both confess, they will spend more time in jail than if they had both stayed quiet.


## A very popular game: the prisoner's dilemma: payoff matrix

- Two players are in this game: prisoner A and prisoner B
- Each player has two strategies: to testify or to keep quiet
- The numbers in blue are the payoffs of prisoner A .
- The numbers in red are the payoffs of prisoner B.
- If both testify, they will both spend 10 years in jail.
- If both keep quiet, they will both spend only 1 year in jail.
- If one confesses and the other stays quiet, the one who confesses will be immediately released but the prisoner who stayed quiet will spend 25 years in jail.


## A very popular game: the prisoner's dilemma: payoff matrix (2)

- If both prisoners testify (quadrant 1):
- Prisoner A gets 10 years
- Prisoner B gets 10 years
- If both prisoners keep quiet (quadrant 4):
- Prisoner A gets 1 year
- Prisoner B gets 1 year
- If prisoner A testifies and prisoner B keeps quiet (quadrant 2):
- Prisoner A goes free
- Prisoner B gets 25 years
- If prisoner $A$ keeps quiet and prisoner $B$ testifies: (quadrant 3)
- Prisoner A gets 25 years
- Prisoner B goes free.


## Analyzing the prisoner's dilemma

- Each suspect is interrogated separately and simultaneously.
- The decisions of each prisoner is therefore made non-cooperatively, which is why they both face a dilemma.
- Dilemma faced by prisoner $A$ if he testifies:
- He gets 10 years if prisoner B also testifies.
- He goes free if prisoner $B$ keeps quiet
- Dilemma faced by prisoner $A$ if he keeps quiet:
- He gets 25 years if prisoner $B$ testifies.
- He gets 1 year if prisoner B also keeps quiet.


## Analyzing the prisoner's dilemma (2)

- No matter what choice prisoner B makes, prisoner A is always better off choosing to testify.
- In the same way, no matter what choice prisoner A makes, prisoner B is always better off choosing to testify.
- They will end up testifying both and getting a 10-year sentence even though keeping quiet has a better outcome.
- In this game, to testify is called a dominant strategy.
- A dominant strategy is a strategy whose outcome is the best irrespective of the choices of other players.

Finding the dominant strategy in a few games: Game 1

|  | Player B |  |
| :---: | :---: | :---: |
|  | Left | Right |
| I Up | ${ }^{1} \quad(7,2)$ | ${ }^{2} \quad(5,3)$ |
| 즘 Down | $3 \quad(3,4)$ | $(4,6)$ |

## Game 1: Player A

- The two players in this game are player A and player B.
- Player A's strategies are Up and Down.
- Player B's strategies are Left and Right.
- If player A chooses Up:
- His payoff is 7 if player B chooses left.
- His payoff is 5 if player B chooses right.
- If player A chooses Down:
- His payoff is 3 if player B chooses left.
- His payoff is 4 if player B chooses right.
- Player A's dominant strategy is Up because his payoff is the highest irrespective of player B's choice.


## Game 1: Player B

- Player B's strategies are Left and Right.
- If player B chooses Left:
- His payoff is 2 if player A chooses Up.
- His payoff is 4 if player A chooses Down.
- If player B chooses Right:
- His payoff is 3 if player A chooses Up.
- His payoff is 6 if player A chooses Down.
- Player B's dominant strategy is Right because his payoff is the highest irrespective of player A's choice.


[^0]:    Source: Highly Concentrated: Companies That Dominate Their Industries, www.ibisworld.com. Special report, February 2012.

